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Signal Nonlinearity in fMRI: A Comparison
Between BOLD and MION

Temuijin Gautama, Danilo P. MandiMember, IEEEand Marc M. Van HulleSenior Member, IEEE

Abstract—n this paper, we introduce a methodology for com- Index Terms—BOLD, fMRI, MION, signal nonlinearity, surro-
paring the nonlinearities present in sets of time series using four gate data.
different nonlinearity measures, one of which, the “delay vector
variance” method, is a novel approach to the characterization

of a time series. It is then applied to examine the difference in I. INTRODUCTION

nonlinearity between functional magnetic resonance imaging . . .

(fMRI) signals that have been recorded using different contrast UNCTIONAL magnetic resonance imaging (fMRI) exam-
agents. Recently, an exogenous contrast agent, monocrystalline ines the concentration of a contrast agent as a measure for

iron oxide particle (MION), has been introduced for fMRI, which  cerebral activity. Traditionally, the endogenous contrast agent
has been shown to increase the functional sensitivity compared deoxyhemogoblin is used for measuring the blood oxygen level

with the traditional blood oxygen level dependent (BOLD) tech- dependent (BOLD) signal, which is a function of the cerebral
nique. The resulting fMRI signals are influenced by cerebral !

blood volume, whereas the more traditionally recorded BoLD blood volume, flow and metabolic rate of oxygen (for an
signals are influenced not only by cerebral blood volume, but overview, see [1]). The BOLD signal is a nonlinear observation
also by the cerebral blood flow and the metabolic rate of oxygen. of the cerebral activity, a property which has been addressed

The proposed methodology is applied to address the question a5 sych both experimentally and from a modeling perspective
whether this difference in the number of physiological variables is [2]-[6]

reflected in a difference in the degree of nonlinearity. We therefore . . .
analyze two sets of fMRI signals, one from a BOLD and the other Recently, the use of monocrystalline iron oxide nanoparticle
from a MION monkey study with similar experimental designs. (MION) as an exogenous contrast agent for fMRI, has been

In the neuroimaging context, the proposed nonlinearity analyses introduced [7], [8], allowing for the measurement of cerebral
are different from those described in the literature, since noa pjgod volume, which itself is a nonlinear function of the blood

priori model is assumed: rather than pinpointing the source(s) of : .
nonlinearity, nonparametric analyses are performed on BOLD flow (see [3]). This approach has been shown to yield a better

and MION fMRI signals. Furthermore, we introduce a strategy ~ SPatial localization of the active brain regions [8], [10], and has
for analyzing a population of fMRI signals, rather than focusing been demonstrated to yield a higher statistical power compared
the analysis on one signal, as is traditionally done in the domain with experimental BOLD studies [8], [11].
of nonlinear signal processing. Our results show that, overall, the  gjnce the production model of a BOLD signal depends on
BOLD signals are more nonlinear in nature than the MION ones, more physiological systems that are coupled in a nonlinear
which is in agreement with current hypotheses. . -
manner than that of MION,we hypothesize that this should
be reflected in a lower degree of nonlinearity in the MION
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is novel: rather than pinpointing the source(s) of nonlinearity,
nonparametric analyses are performed on BOLD and MION ©
fMRI signals, and a comparative study is performed to test
the hypothesis that BOLD signals convey a higher degree of
nonlinearity than MION signals, irrespective of their source(s)
of nonlinearity. Instead of analyzing the relationship between
stimulus and fMRI signal variation [3], [4], [6], [14], [15], we
analyze the fMRI signalper se Notice that in this way, we
analyzesignal rather tharsystenmonlinearities.
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Over the last decade, many nonparametric analysis tech
nigues have been developed for the detection of nonlinearity
in a signal (for an overview, see [16]). In this context, many *
biomedical signals, including heart rate variabilities (HRVS),
electrocardiogram (ECG), hand tremor, and electroencephalo- 0T~
gram (EEG) have been analyzed (see, e.g., [17]-[20]). In this  o;
paper, we introduce a novel “delay vector variance” (DVV) -50
approach for the characterization of a time series and apply
it to fMRI. Several other nonparametric nonlinearity analysis
techniques are also considered in this context. Extensive
experimentation and rigorous analysis show that the DVV
results are more consistent than the those obtained using the

EB 1. Time slices of the four fMRI signals (after mean subtraction and
other methods. We further propose a new methodology f@dtrending). Starting from the upper left and moving clockwise: BOLD left

a population analysis, i.e., for comparing sets of time serié4] (sv1), MION left MT (su,1), MION right MT (s ), and BOLD right
rather than limiting the analysis to one signal per set. TAL' (s0)-

proposed methodology is readily applicable to other type of

biomedical signals. B. Signal Versus System Nonlinearity
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Alinear systemf(-), is defined as one that obeys the super-
position and scaling property, namelftax + by) = af(z) +
(y). A system which violates these properties is nonlinear.
y itself, this allows for a very strong tool for assessaygtem
gonlinearity, referred to as “temporal summation,” as has been
[Plied in the field of neuroimaging [3], [4], [6], [14], [15]: a

Il. SIGNALS AND METHODS

In this section, the data under analysis are briefly describ
The concept okignal nonlinearity is compared with that of
systemmonlinearity, after which different nonlinearity measure

are explained. These measures are computed for the origi 1t and a lona oulse are presented to the system and a svstem
time series and compared with those obtained for lineariz& gp P y ’ y

versions of the signal, called “surrogate time series,” or “sup inear if the response to the long pulse can be predicted from

rogates” for short. The procedure for the statistical testing aﬁisummatlon of temporally shifted versions of ihe response to

the generation of the surrogates is discussed and, finally, we p ¢ short St'”;1UIUSZ ivle of | ion f Vsi
pose a novel methodology for the nonlinearity analysis of se SHowe\I(er, t € prlpmp eo tem_pori':_l surrr:ma_non or a(?a ysing
of signals (population analysis), and illustrate it by means oft 3¢ nonlinearity of a system implies that input and output

synthetic example. We then apply this method to fMRI data fine series can be mgagured smultgneously, Wh'le In-many
Section Il real-world settings, this is not possible. In applications of

neuroimaging, for instance, the output can be recorded, but
the input, i.e., the cerebral activity itself, cannot be measured
directly. It is, therefore, approximated by an abstract stimulus
We analyze time series from two monkey fMRI motiorrepresentation (a square wave representing the alternation
studies, which are similar in experimental design, one frobetween conditions of stimulation and no stimulation).
BOLD and the other from MION scanning sessions (for details, The analysis of the nonlinearity ofssgnalcan often provide
see the description of macaque monkey M1 in [8]). We analy#gsights into the nature of the underlying production system.
14 fMRI signals of every study, corresponding to two of thelowever, care should be taken in the interpretation of the re-
foci of the study, namely motion areas left and right MT/V5ults, since the signal and system nonlinearities are confounded:
and their neighboring voxels, yielding a total of 28 signals. Thtee assessment of nonlinearity in a signal does not necessarily
voxel matching is based on anatomical coordinates, and imgply that the underlying production system is nonlinear. In-
have taken the BOLD foci for reference. The BOLD signaldeed, if the input to the system were nonlinear and the system
consist of N = 1920 samples, whereas the MION signalstself linear, the measured signal at the output would be non-
comprise N = 1200 samples, only segments of which ardinear. Therefore, no unambiguous conclusions regarding an un-
shown in Fig. 1. All signals are mean subtracted and lineartierlying system can be drawn from the nonlinearity analysis of
detrended using linear regression. We shall adopt the followinge signal. However, this approadbesallow for a compar-
naming convention: BOLD left MT(s}, 1), BOLD right MT ative analysis between different systerdsien by the same
(Sb.r), MION left MT (sp,1), and MION right MT (s 1 ). input Therefore, we examine the difference in signal nonlin-

A. Data Description
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earity between BOLD and MION fMRI signals, which have A B
been recorded under comparable experimental designs. = ol L7 o
S sl w
. . |
C. Nonlinearity Measures S 4o 7 08— .
- 1

Many of the techniques described in this section rest upon th % A N :
method of time delay embedding for representing a time serie 201 v 00 !
in phase space, i.e., by a set of delay vectors (DVs) of a give . 02 !
embedding dimensiom, x(k) = [Zk—mr - - . Tk—-|, Wherer is 18'/ :
atime lag, which for simplicity is set to unity in all simulations. 84| | 00 [ I N
In other wordsx (k) is a vector containingn consecutive time 200 w0 o B

samples. Every D¥%(k) has a correspondirtgrget namely the
next samplevk. Fig. 2. Example analysis for fMRI signail, ;. (A) Grassberger—Procaccia

1) Traditional Nonlinearity MeasuresTwo well-estab- curve in the standardized scaling region. The dashed curve represents the
. . . C output of the regression from which the slope is computed (in this case
lished measures for nonlinearity are considered, namerCgR = 3.45). (B) lllustration of Cao’s method for determining the optimal

third-order autocovariance (C3) embedding dimension. The determined point of convergence lies at 12.
t9(r) = (wrwr—rri—2r) o We adont the following crterion 1
I . . imension < m < 25. We adopt the following criterion for
and the deviation du’e tome rever5|b|l|ty(REV) determining the point of convergence: the difference between
V(1) = ((zr, — 2e—r)?) (2) consecutive measurements should be lower than 0.01 and the
wherer is a time lag, which for simplicity and fair comparison measurement should exceed 0.95 times the mean of the last five
is set to unity in all analyses. For more details, we refer to [Zmeasurements (to compensate for false plateaus). This method
and [22]. is exemplified forsy, ; in Fig. 2(b).
2) Correlation Exponent:The approach is described in [23]
and computes the correlation exponent, which yields an indich— DVV Method
tion of the local structure of a strange attractor. For this purpose Here, we introduce a novel analysis of a time series which ex-

the correlation integral is computed as amines a signal’s unpredictability by observing the variability
. 1 o of the targets belonging to sets of similar DVs. The approach
Cl) = lim - {number of pairg;, ;) whose is somewhat related to the false nearest neighbors [26§, the

distance||x(i) — x(4)|| is less thard} € methods [27], and the generalized synchrony approach pro-

_ o i posed by [28]. The proposed DVV method can be summarized
wherel is alength measure which is varied, aWds the number 55 follows for a given embedding dimension

of DVs available for the analysis. In [23], it is established that
the correlation exponent, i.e., the slope boig(C(1)), log(l)),
can be taken as a measure for the local structure of a strange,
attractor. Several methods exist for determining the range over
which the slope is to be computed (“scaling region,” see, e.g.,
[16] and [24]). We adopt a pragmatic approach. The slope is
computed over theinterval[uq & 04, whereu,; ando, are the
mean and standard deviation of all possible pairwise distances,
between different DVs. The resulting slope [referred to as cor-
relation exponent approach (COR)] should not be interpreted as
the actual correlation exponent, but it is sufficient in the context
of surrogate data testing (see Section II-E), since it examines
the correlation integral in a standardized scaling region. Indeed, " % 22;1 o7
since the surrogate time series have signal distributions identical o =5
to that of the original (see Section II-E), the distribution of pair- _ )
wise distances and, thus, the mean and standard deviation, will \We refer to this measure as the “target variance,” and only
be similar. Note that this distribution is approximately Gaussian compute the variance ;. contains at least 30 DVs.
for high embedding dimensions. Therefore, the correlation in- !t IS intuitively clear and mathematically sound that, when
tegral curve is examined in similar regions for both original ari#® €mbedding dimension and time lag are correctly determined
surrogate data, and a difference in the slope indicates a difféRd the signal exhibits some kind of structure, similar delay vec-
ence in local structure. Fig. 2(a) shows an example of the scalfq§s (in terms of their Euclidean distance) have similar targets.
region and the corresponding slope. T .erefore, fora (_:orrect choice of empeddlng param(_eters (wh|ch
The embedding dimension for which the COR analysis is pdfight not be unique), the target variance conveys information
formed, is determined using Cao’s method [25], which is relatég9arding one of the fundamental properties of a signal, namely
to the false nearest neighbor method [26]. The meadiirel), its pred|ctab|I|ty. The two extreme cases are yvhlte noise (com-
stops changing whet exceeds the optimal embedding dimenPletely unpredictable) and a deterministic signal (completely
sion, and quantifies the degree in which nearby DVs have Simeryjs s related to the continuity of the mapping from DV to target, as de-
ilar targets. In our simulations, it is evaluated for embeddirgribed in [27].

» The mean.; and standard deviatian; are computed over
all pairwise distances between DVs.

The setd?; are generated, which consist of all DVs that
lie closer tox(k) than a certain distance. The distances
are taken from the intervgly — nqoq; pa + naod), €.9.,
uniformly spaced, where, is a parameter controlling the
span over which to perform the DVV analysis.

For every sef),, the variance of the corresponding tar-
gets,o7, is computed. The average over all sets, divided
by the variance of the time serie$ yields the measure of
unpredictabilityo*>

. ®
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suggested by [29]. For every original time series, we generate
N = 99 surrogates for the nonlinearity tests. A right-tailed test
(DVV) is rejected if rankr of the original time series exceeds
90, and a two-tailed test (C3, REV, and COR) is rejected if rank

r is greater than 95 or less than or equal to 5. For the subsequent
analyses, it is convenient to define the symmetrical napk .,

0.5+

as follows:
PO R T T S T S TN Y B A .
3 2 4 0 1 2 3 3 2z 41 0 1 2 3 § . .
A
standardised distance standardised distance rsymm[A)] = N—+17 for right - tailed tests
S

N.+1
Fig. 3. (A) DVV-plots for BOLD left MT and (B) MION left MT shown as - |T - | .
solid curves. The average DVV-plots for linearized versions (computed over 99 - N.+1 , for two - tailed tests (4)
surrogates) are shown as dashed curves. 2
In this way, any of the described tests (right- or two-tailed) is
dictabl h Hting * lots” btained by bl rejected ifrsymm > 90%.
predictable). The resulting "DVV-plots” are obtained by plot- gyayigtical Testing:A key issue in surrogate data testing is

ting this measure of unpredictabilifg*?) as a function of the the definition of an a ; : :
. . ppropriate null hypothesis. In this study,
standardized distances. Examples for BOLD left l4,1) and we have adopted a composite null hypothesis [30]. In contrast

,'[\_Mcl)N_:_ift I\Ig\-l;\/(sﬁl’lt) ?re I_show_n |r(1j Fig. .3(3) aptdh (), tr_especfo asimplenull hypothesis, which asserts that the analyzed time
Ively. The -plots Tor linearizea versions of INESe M€ Seseries is a realization of a specified and unique processia

rle_ls:rlei)rrz?na;:a;ns;; dfdui:hZri)rn{;‘err?s?gr?vggnalfed(?estr:gwi(r:::er(\j/(laa& . ositenull hypothesis specifies a family of processes and asserts
ning a nﬂmber of DVV ar?al ses for different valuesiof ang Rat the process underlying the given time series is a member
g Y s?f that family [29]. In the case of the composite null hypoth-

choosing that for which the minimal target variance is lowe ; S o
) o . i~ e5is that the time series is generated by a Gaussian linear sto-
i.e., that which yields the best predictability. We have performe : ;

astic process, surrogates aomstrainedo produce autocor-

this analysis for embedding dimensions ranging from 2 to 25. " . . . . . .
Example}; are shown in Figg 7 ging relation functions identical to that of the original time series,

In the following step, the linear or nonlinear nature of th&9- by phase randomizing the frequency spectrum of the orig-

time series is examined by performing DVV analyses on bot'ﬂaI time series [Fourier ransform (FT)-hased metth]. HOW'
the original and a number of surrogate time series (see belo ?r’ the FT-basc.ad.method cou!d Iead_ to.a f_alse reject|o!1 of
using the optimal embedding dimension of the original time sE1¢ Null hypothesis if, e.g., the signal distribution of the orig-
fies. Due to the standardization of the distance axis, these plg@ time series would not match that of the surrogates, i.e.,
can be conveniently combined in a scatter diagram, where f8ussian, even if the process underlying the original time se-
horizontal axis corresponds to the DVV-plot of the original tim&©S Were Gaussian and linear. This is the case for a time series
series (Fig. 3, solid curves), and the vertical to that of the si#enerated by a Gaussian and linear process and subsequently
rogate time series (Fig. 3, dashed curves). If the surrogate tiRfgsSed through a zero-memory observation functi¢r),[30].
series yield DVV-plots similar to the original, the “DVV scatterSUch an effect can be incorporated into the composite null hy-
diagram” coincides with the bisector line, and the original imBothesis by constraining the surrogates to have both identical
series is probably linear. The deviation from the bisector line idUtocorrelation functionandidentical signal distributions, as-
thus, a measure of nonlinearity (for examples, see Fig. 8). suming that the zero-memory observation functigr) is in-

For statistical testing, it is convenient to quantify the DV\vertible? Thus, the composite null hypothedi is that of an
scatter diagram using a single measure. The deviation from thderlying Gaussian, linear and stochastic process, followed by
bisector line can be used for this purpose and can be compugegero-memory and invertible observation function.
as the root-mean-square error (RMSE) betweewr this of the Surrogate Data GenerationVarious approaches have been
time series (original or surrogate) and #&'s averaged over proposed inthe open literature for generating surrogate time se-
the DVV-plots of the surrogate time series. ries consistent with the aforementioned composite null hypoth-
esis (for an overview, see [31]). For computational efficiency,
we have opted for the iterative amplitude adjusted FT (IAAFT)

) ) ) method, introduced in [32]. It retains the linear properties of the

~ The described techniques compare their results on the ofigta namely the autocorrelation function (estimated by means
inal signals to those obtained for linearized versions of thegthe amplitude spectrum) and the empirical signal distribution.

signals, the so-callesurrogatetime series (or “surrogates” for A syrrogate time series is generated using a fixed point iteration
short). These surrogates are realizations of a composite null Byyorithm, which guarantees an exact replica of the signal dis-
pothesis, which in our case is that the original time series ightion, and an approximation of the spectrum (the converse
linear (see further). If the analysis result for the original timgqu1d also be possible, but its impact is beyond the scope of

series is significantly different from those of the surrogates, thgis paper). We do not include an endpoint matching procedure
null hypothesis is rejected and the original time series is hypoth-

esized to be nonlinear. Since the analytical form of the proba-3't is important to note thak(-) is not considered as an integral part of the
enerating process, since a memory-less and nonlinear function would violate

bility d|§tr|but|on of the test Stat'St'ng i.e., the nonl'near_'ty Medpe superposition principle. It should be regarded as part of the analysis, namely
sures, is not known, a nonparametric rank-based test is usedsascorrection for deviations from a Gaussian signal distribution.

E. Statistical Testing and Surrogate Data
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Fig. 4. Time slices of two surrogates, respectively, generated fos(Aand & 100
(B) $m,1. 75

for the fMRI time serieg, since they are periodic by design (the 25
same stimulus sequence is repeated several times). Fig. 4(a) and 0
(b) shows time slices of two surrogates, respectively, generated
for sy ands, 1. Where necessary, the optimal embedding di- Foymm
mension is only determined for the original time series, after
which this value is also used for the analysis of the surrogates. COR

The COR analysis is more specific than the other nonlinearity .
analyses, since it examines the local structure of a strange at-
tractor in a certain scaling region. On the other hand, there exist
time series that do not follow a strange attractor,daiead to a
rejection of a null hypothesis of linearity. Still, if one time series N ; »
follows a strange attractor, and another does not, there should 0 25 50 75 100
be a difference in COR results. However, a difference in COR Tsymm
results as such does not provide sufficient evidence for the pres-
ence of a strange attractor.

DVV

F. Population Analysis ® 100

We propose a methodology for comparing different sets of 75

signals on the basis of their degrees of nonlinearity. In this way,

conclusions can be drawn with respect to a population of sig-

nals, rather than of single time series. Each set conféjrtame o3 25 50 T 75 100

series, for each of whicV, = 99 surrogates are generated for Ty

performing the rank-test. For each of the four nonlinearity tests

(031 REV, COR, DVV), the test statistic is computed for th?ig- 5. Histog_ram of the rank results.of the considered nonlinea_rity_ analyses
.. . . . . or the sets of linear (black bars), nonlinear (gray bars) and chaotic time series

Ong'nal time series and itd/; = 99 CorreSpondmg Surl’Og""-t(:"si(white bars), using bins of 10%. The horizontal axis denotes the symmetrical

after which it is assigned a symmetrical ranknm [(4), where  rank defined in (4).

C3, REV, and COR are two-tailed, and DVV right-tailed tests].

Thus, every set of time series yield§, symmetrical ranks, model, with linear coefficients that were identical to the linear
which are visualized in a “rank histogram,” the rightmost bidR(4) model, also driven by Gaussian white noise. The chaotic
of which corresponds to a significant rejection of the null hyjme series were different realizations of the Hénon map. In
pothesis at the level ok = 0.10 (i.€., 7symm > 90%). We  total, we generated three sets/f = 50 time series ofV =
denote the rejection rate as the percentage of ranks that fall ity samples, for each of whicN, = 99 surrogate time series
the rightmost bin. Ideally, the rank histograms should display,fere generated.
100% rejection rate for a set of nonlinear signals, and for a setrig. 5 shows the results for the linear (black bars), nonlinear
containing linear signals, every bin should contaiN,, ranks (gray bars) and chaotic (white bars) sets. The time reversal
(thus, a rejection rate of 10%). strategy (REV) shows excellent performance: the rejection rate
To illustrate the proposed method, consider the following 1994 for the linear set, 98% for the nonlinear set, and 100%
example of three synthetically generated sets of time series, @§€the chaotic set. The performance of the proposed DVV is
linear, the other nonlinear and the third inherently chaotic. Ti@yer: 14% for the linear and 78% for the nonlinear sets, but
linear time series were generated from an autoregressive mogleh 100% for the chaotic set. The third-order cumulant (C3)

of order four [AR(4)] which was driven using Gaussian whitgng the COR are unable to detect nonlinearity in the nonlinear
noise. The nonlinear time series were generated from a bilinear
SIn contrast to those generated for the fMRI signals,hageused the end-
4The endpoint matching procedure is suggested in [31] as a compensatiorpiaint matching for reasons described in [31], since the synthetic signals are
the bias toward a flatter spectrum due to the periodicity assumption of the fast periodic by design. The first and last 40 samples are scanned and the best
Fourier transform (FFT). matching signal values are used as the signal’s start and end points.

50
25
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C3 TABLE |
2 100 REJECTIONRATES (REJ), IN PERCENT AND RESULTS OF THETWO-TAILED
WILCOXON RANK SUM TEST ( Py ) FOR A DIFFERENCEIN DISTRIBUTIONS.
THE COLUMNS ARE LABELLED “iAAFT” AND “FT” FOR THECORRESPONDING
50 CoMPOSITENULL HYPOTHESES(SEE SECTION II-E). THE LABELS A AND R
25 IN THE LAST Two COLUMNS DENOTE ACCEPTANCE ORREJECTION

OF THENULL HYPOTHESIS AT THELEVEL OF 0.05
o 0k o ']_ﬂ_-:u,
50 75 100

0 25
NL Rej Si, Rej Sm P
measure  IAAFT FT iAAFT FT  JAAFT FT
c3 7 7 7 7 0.8743 (A)
REV REV 43 57 21 28 0.0008 (R)
o 100
ES COR 86 93 36 43 0.0241 (R)

80
o DVV 79 79 57 57 0.0350 (R)  0.0042 (R)

40
20

75

r

symm

TABLE 1l
00 20 20 50 80 100 RESULTS OF THENONLINEARITY ANALYSES. THE RANK 7 FOR EVERY
r SIGNAL CORRESPONDS TOTHAT IN THE RANK TEST (USING N, = 99
symm SURROGATEY. THE BOXES INDICATE THE TESTS THAT REJECT THE
NuLL HYPOTHESIS AT THE10% LEVEL OF SIGNIFICANCE

COR signal C3 REV COR DVV
- 100

S5 left MT BOLD (s3,,) 65 g7 [1] [Loo
7 right MT BOLD (s,,) 58 [ 100

50 feft MT MION (s,)  [99] 7 83 83

25 right MT MION (s} 27 2 93 100

04 w1 [ |- I l—'
0 25 50 75 100

Tsymm exception of C3, all analyses have a higher rejection raté&;for
than forS,,. The latter rejection rates are still higher than the
DVV 10% which is expected for linear signals, therefore indicating
o 100 that, on average, the MION signals are nonlinear, but less so
compared with the BOLD signals. The results for C3 ao¢
consistent with our hypothesis.
We further test for a difference in distribution between the
nonlinearity measures fof, and S,,, using the two-tailed
0 25 50 75 100 Wilcoxon rank sum test. The results are shown in Table |
ey (columns labeled “IAAFT”). The fourth column showsy, the
probability of observing a result equally or more extreme if the
Fig. 6. Histogram of the rank results of the considered nonlinearity analysgg|| hypothesis were true (thuBy ~ 0 indicates a difference

for the two sets of fMRI signals, using bins of 10%. Results for the BOL s . . .
signals are shown as black bars and those for the MION signals as white b sd'smbuuons)' Note that a one-tailed version of the test, for

Asis the case in Fig. 5, the horizontal axis denotes the symmetrical rank defifdd : tBorLpD < ftmronN. IS rejected for the same three tests
in (4). with Py values that are half of those in Table I. The results
for REV, COR, and DVV support the hypothesis that there is,

set: the rank histograms for the linear and nonlinear sets 4jdeed, a difference in nonlinearity between BOLD and MION
similar, i.e., flat with rejection rates of 14% and 17% for c35ignals. The C3 test does not detect this difference as it did
respectively, 8% and 6% for COR. However, both detect tfot distinguish between the linear and the nonlinear sets in our
nonlinearity in the chaotic set (100% for C3 and 97% fopyNnthetic example (Fig. 5).

COR). This is not surprising for COR, since, as explained in 1€ CORrejection rates i@, (86%) ands:, (36%) suggest
Section II-E, it is based on the presence of a strange attrachF’}t the difference in nonlinearity could be attributed to the pres-

a property which is absent in the bilinear model that has be€Ace of a strange attractor, indicating possible chaotic behavior,
used for generating the nonlinear time series. albeit the evidence is not conclusive (see Section II-E2). Cao’s

method yields an optimal embedding dimensions between 9 and
13, with no significant difference in distributions betweg&p
andS,,.

Population Analysis:The population analysis for nonlin- Detailed Analysis for Example Case$he foci (left and
earity is now performed on the two sets®f = 14 fMRI time  right MT) of the two studies are now examined in more detail to
series, one from the BOLLY),, and the other from the MION illustrate the various analysis methods. The rar the mea-
study, S,,. The rank histograms are shown in Fig. 6 (BOLBurement for the original time series is shown in Table Il. The
results in black, MION results in white) and the rejection ratdable illustrates that it is not evident to detect nonlinearity, since
in Table | (columns labeled “iIAAFT"), showing that with thethe various tests (at the level of 0.10) yield different results.

75
50

25

Ill. RESULTS
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Fig. 7. Target variancer*? for the four fMRI signals as a function of the
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shown). Qualitatively, the DVV scatter diagrams in Fig. 8 in-
dicate that the nonlinearities present in the MION signals are
less pronounced than those in the BOLD signals, which is also
evident in the RMSE values, which are 0.0804 and 0.0639 for
BOLD, and 0.0214 and 0.0275 for MION, respectively, for left
and right MT.

IV. DISCUSSION

It has been shown both experimentally and from a modeling
perspective that the BOLD fMRI signal is a complex function
of the underlying cerebral activity, and depends on the cerebral
blood flow, blood volume, and metabolic rate of oxygen [2]-[6].
Recently, the use of MION as a contrast agent has been shown
to yield a better spatial localization of the active brain regions
and a higher statistical power [8], [11]. The MION fMRI signal
is dependent on fewer (nonlinearly) interrelated physiological
systems than the BOLD one, namely predominantly on blood
volume, which, in turn, is a function of blood flow. This has
led to the working hypothesis of the paper, namely that BOLD
signals show a higher degree of nonlinearity than the MION

embedding dimension. Starting from the upper left and moving clockwisg: signals.

S$m 1, $m r, @Ndsy .. The dashed line indicates the minimal target variance and, Rather than analyzing and identifying the nonlinearities
thus, the optimal embedding dimension.

BOLD MION
2 2
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Fig. 8. DVV scatter diagrams of the four fMRI signals for the optimal
embedding dimension (median and quartiles). Starting from upper left

present in the production systems of BOLD and MION, we
guantify the signal nonlinearities in the fMRI signals, and
perform a comparative study between BOLD and MION.
Since both are “driven” by the underlying cerebral activity, a
difference in signal nonlinearity can be attributed to a differ-
ence in system nonlinearity. For the assessment of nonlinearity
in a single time series, we have introduced a novel way for
characterizing a time series, the DVV method, and have com-
pared the results with three other, well-established nonlinearity
measures, namely those based on C3, REV, and COR, the
latter of which stems from chaos theory. Furthermore, we have
introduced a methodology for comparing and testing the degree
of nonlinearity between populations of signals, rather than
limiting the analysis to one time series per set, as is traditionally
done in the nonlinear signal processing literature.

The proposed methodology has been applied to time series
obtained from two monkey motion fMRI studies, one BOLD
and one MION, which are similar in experimental design. The
results for the two sets of fMRI signals show that the ratio of
BOLD signals in which nonlinearity is detected, is higher than
that of MION signals, but that in both cases, there is an indi-
cation of nonlinearity. This is not surprising, since the neuronal
activity underlying the BOLD and MION signals has been con-

tured to be nonlinearly related to the stimulus (see, e.g., [1],

moving clockwise:sy 1, $m.1, Sm.s» andsy ., With corresponding RMSEs of [6]). Furthermore, we have tested for a difference in distribu-
0.0804, 0.0214, 0.0275, and 0.0639.

tions between the nonlinearity measures for BOLD and MION
using the Wilcoxon rank sum test, and found that for all mea-

Both the COR and DVV analyses indicate the BOLD signakures except the C3, the difference is significant at the level of
to be nonlinear. The REV analysis only shows nonlinearity f@.05. Finally, the COR analysis, which is related to the pres-
sp,r, and the C3 analysis indicates the presence of nonlineartyce of a strange attractor, rejects the composite null hypothesis,

in sm,1. The DVV analysis also detects nonlinearities ..

namely that the time series is generated from an amplitude trans-

The DVV analyses yield optimal embedding dimensions dbrmed Gaussian linear stochastic process. This indicates that
21, 16, 15, and 11, respectiveby, |, sur, sm,1, ands,, . (see the nonlinearities present in fMRI signals could be attributed to
Fig. 7). The DVV scatter diagrams are shown in Fig. 8 (so &se presence of a strange attractor, indicating possible chaotic
not to overload the figures, only one in three error bars abehavior, as described in Section II-E.
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A B distribution are avoided (see, e.g., [31]). The results of this
w 307 w 0967 analysis confirmed our working hypothesis. However, the ques-
20l = zzz tion remains whether the difference in degree of nonlinearity
10 0.24] between BOLD and MION can be attributed to the amplitude
0o 020 transformation, or to the fMRI signals themselves. In order to
' 0.16- address this question, we have also performed the population
1o 0.12 analysis without including the amplitude transformation,
201= 0.081 namely by using FT-based surrogates (see Section II-E). As
sgb—— - = cour—g———— a result, the rejection rates should not be smaller than those

time [s] T[s] in the case of the iIAAFT-based surrogates, since the null
hypothesis is less stringent. This is confirmed by the results
Fig. 9. A) Time segment of a hypothetical fMRI response to an on/ohown in Table | (columns labeled “FT”). When the rejection
stimulus, for a period” = 53 s; B) Average degree of nonlinearity (RMSE), t h th hiaher for the BOLD si Is th f
computed over 50 time series, as a function of the pefiodhe vertical bars '&l€S change, they are higher _Or e signais . an _Or
indicate the standard deviations. the MION ones. Moreover, the difference between nonlinearity

measures for BOLD and MION remain statistically significant.

The validation of our working hypothesis supports and, to Bhis is trivial for C3, REV, and COR, since only the measures
certain extent, explains the findings described in [8] and [11fpr the original time series are used and are, thus, not influenced
where it has been demonstrated that fMRI experiments usiy the surrogate data. The result for DVV changes, since this
MION yield higher statistical power than those using the BOLIMethod uses the Euclidean distance between the DVV-plot of
effect. Indeed, since conventional fMRI analyses use a gendf# original and the average DVV-plot of the surrogates, and
linear model, the lower degree of nonlinearity of MION studiethe difference in distribution becomes even more significant.
will yield a lower regression error, and subsequently, highdhus, even when performing the nonlinearity analyses with
statistical power compared with BOLD studies. Furthermor#)e strict definition of nonlinearity, BOLD signals are more
the validity of the correction for the haemodynamic impulse-réonlinear than MION signals.
sponse function is violated in a lesser degree by the MION thanThe proposed methodology has been applied to the case
by the BOLD signals. of fMRI data recorded using different contrast agents. The

One could argue that the difference in nonlinearity betweéfsults support the current hypotheses that, indeed, BOLD
BOLD and MION could be attributed to different stimulusfMRI signals are more nonlinear and, thus, more complex,
durations, which in our case are 24 s for BOLD and 66 s f&pan the MION signals. The same methodology can be readily
MION. To shed further light on this, hypothetical responses &pPplied to other sets of biomedical signals where a difference
on/off stimuli are generated, the perid@dof which is varied. in nonlinearity can, e.g., convey information about the health
They consist of square waves, sampled every 3.321 s, walljtus of the subject, as has been suggested in the cases of
an amplitude of 0.5, contaminated by Gaussian, unit-varianeE&G (see, e.g., [33]) and HRV (see, e.g., [34]) signals. The
white noise, and convolved with the haemodynamica| |nDVV method is expected to provide useful information in these
pulse-response function traditionally used for analyzing BOLBEttings, since it yields clear information regarding the degree
studies. A time slice of an example signal with= 53 s is to which the signals in question differ from linear ones, namely
shown in Fig. 9(a). The perio is varied from 53 (BOLD) the distance to the bisector line in the scatter diagrams, and
to 133 s (MION), and the DVV method is used for measuringince the sensitivity of the method is overall higher than that
the degree of nonlinearity (RMSE; the average DVV-plot igf other methods.
computed over 19 surrogates). For every period, 50 time series
are generated, each of which with a length of 27.678 min, ACKNOWLEDGMENT
using different random seeds for the noise. The results are
Summarized in F|g g(b) The degree Of non”neamt&reases The authors wish to thank W. Vanduffel and G. A. Orban for
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